产品详细
:为开发深层油、气井,提高其产量,压裂工艺被广泛采用。为确保地下深层压裂缝的有效撑开,合适的支撑剂是必须的,它可增加地层的导流能力,提高油或气的产量,是压裂工艺应用好坏的一个主要的因素。烧结陶粒由于强度高,圆球度好,为人们优先选择的压裂支撑剂,一直受到格外的重视。其中以铝矾土为主要的组成原材料,配合其他无机物料,制造陶粒支撑剂,为众多厂家所应用。压裂支撑剂是石油、天然气开采压裂操作的流程用来支撑岩缝的具有一定强度的固体颗粒。在使用的过程中,把支撑剂混入压裂液中,利用高压手段注入深层岩石裂缝中支撑岩层,以提高导油率,增加原油产量。目前,除石英砂外,最常用的支撑剂是用铝矾土制造的陶粒,随着压裂技术的持续不断的发展,石业对支撑剂的需求慢慢的变大,对性能的要求也慢慢变得高。目前,深层低渗透油井压裂对高密度超高强度石油压裂陶粒支撑剂有着较大需求,而高强度低密度支撑剂的应用也是提高深油井石油产量的重要措施。视密度大的支撑剂容易在压裂产生的裂缝端口处产生丘状的堆积,对导流极其不利;体积密度大则会增加填充地层裂缝所需支撑剂的质量,增加压裂作业的成本。高强度低密度陶粒支撑剂的研制,不仅仅可以满足深井压裂的要求,而且有助于提高产层的导流能力并增产增效。陶粒支撑剂是石油、天然气低渗透油气井开采压裂施工全套工艺流程中的关键材料,使用陶粒支撑剂压裂的油井,不但能增加油气产量,而且更能延长油气井服务年限。陶粒支撑剂的性能要求主要有:支撑剂要有足够的抗住压力的强度和抗磨损能力,能耐受注入时的强大压力和摩擦力,并有效地支撑人工裂缝;支撑剂颗粒相对密度要低,便于泵入井;支撑剂颗粒在温度为200度的条件下,与压裂液及储层流体不发生化学作用,酸溶解度最大允许值应小于7%。目前常用的支撑剂主要有石英砂、铝钒土陶粒砂及树脂包砂等。由于石英砂成本低,同时密度较低易于泵送,被大量使用,但石英砂强底低、球度差,降低裂缝导流能力,不适用于闭合压力高的深井。树脂包砂的球度有改善,抵抗腐蚀能力比较强,导流能力也较好,但产品保持期短,造价过高,在成本至上的今天推广不易,而采用铝钒土陶粒工艺的陶粒支撑剂,密度高,球度好,耐腐蚀,耐高温,耐高压,同时成本能够获得较好的控制,因此愈来愈普遍的被油气田所采用。实践证明,使用陶粒支撑剂压裂的油井可提高产量30~50%。目前公开了一种陶粒支撑剂的制造方法。它是在现有制造方法基础上,通过改进原辅料的成份和配比,和控制粉料的粒径和烧结温度来达到发明的目的。它以al2o3含量≥75%的铝矾土,在600~1000℃焙烧后,加入2~15份的膨润土,镧系金属氧化物1~10份,二氧化锰0.3~3份,氧化镁0.1~3份,经混合后烧结成产品。上述技术中的陶粒生产由于原材料组分多,工艺不易控制,造成质量不稳定,破碎率偏高(7~10%左右)。因此,急需开发一种支撑效率高且不易破碎的陶粒支撑剂。技术实现要素:本发明所要解决的技术问题:针对目前支撑剂容易受到冲击而破碎,支撑效率低的问题,提供一种陶粒支撑剂及其制备方法。为解决上述技术问题,本发明采用如下所述的技术方案是:一种陶粒支撑剂,包括陶粒基材、辅助烧结料、硅烷偶联剂、耐磨表层填料、混合接枝物。所述陶粒基材为:取铝矾土按质量比4~8:1~4加入紫砂土混合,即得。所述辅助烧结料为:按质量份数计,取10~15份硅灰石、3~8份锰矿粉、1~3份钾长石、1~4份白云石混合,即得。所述硅烷偶联剂为:取乙烯基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷中任意一种或任意几种按任意质量比混合,即得。所述耐磨表层填料的制备方法为:(1)按质量份数计,取10~15份填料基料、7~10份丙烯酸-2-乙基己酯、1~4份十二烷基二苯醚二磺酸钠、70~90份去离子水搅拌混合,得混合物,加入混合物质量5~9%的磷酸钾搅拌混合,再加入混合物10~15%的氯化钾搅拌混合,得混合物a,加入混合物a质量1~3%的过硫酸钾,通入氮气保护,升温至70~80℃搅拌混合3~5h,得搅拌混合物;(2)取搅拌混合物按质量比4~9:10~20加入氯化钙溶液,静置,取沉淀干燥,得干燥物,取干燥物按质量比1~4:80~90加入二甲苯,加入干燥物质量1~3%的钯催化剂,通入氢气,升温至110~120℃保温4~8h,得混合物b,取混合物b按质量比2~5:10~30加入无水乙醇,静置,取沉淀a干燥,混炼,平板硫化,冷却至室温,即得耐磨表层填料。所述步骤(1)中的填料基料为:取异戊二烯按质量比10~20:3~9加入α-松油烯混合,即得。所述混合接枝物为:按质量份数计,取8~12份丙烯酰胺、6~9份丙烯酸、5~8份2-丙烯酰胺基-2-甲基丙磺酸、1~3份n,n-亚甲基丙烯酰胺混合,即得。该制备方法有如下步骤:s1.取陶粒基材按质量比10~20:3~9加入辅助烧结料混合,球磨,粉碎过300目筛,收集过筛颗粒按质量比10~20:3~8加入去离子水混合,造粒,过30目筛,收集过筛颗粒a抛光,干燥,得干燥物,取干燥物于200~300℃保温2~4h,再以5℃/min升温速率升温至1450~1510℃保温1~3h,冷却至室温,得冷却物;s2.取冷却物经无水乙醇、丙酮洗涤干燥,得干燥物a,取硅烷偶联剂按质量比1~5:10~15加入石油醚,调节ph至3~4,得混合液,取干燥物a按质量比2~5:10~15加入混合液,静置,过滤,取滤渣真空干燥,得线.取混合接枝物按质量比5~10:3~7:30~40加入耐磨表层填料、真空干燥物,加入混合接枝物质量20~30%的氢氧化钠溶液,通入氮气保护,再加入混合接枝物质量3~6%的过硫酸铵搅拌混合,得基体物,取基体物按质量比90~100:1~4加入引发添加剂混合,于35~40℃保温3~6h,干燥,粉碎过25目筛,收集过筛颗粒,即得陶粒支撑剂。所述步骤s3中的引发添加剂为:取偶氮二异丁咪唑啉盐酸盐按质量比1~4:5~9加入亚硫酸氢钠混合,即得。本发明与其他方法相比,有益技术效果是:(1)本发明以铝矾土和紫砂土为原料制备陶粒,形成力学强度较好的陶粒支撑剂,同时加入硅灰石降品的烧成温度,减小其热膨胀系数,锰矿粉可以与铝矾土中的氧化铝形成固溶体,增加晶格缺陷,活化晶格,使得刚玉相强度增加。促进烧结,钾长石和白云石在高温下可生成液相,使得相之间的键合能力得到提高,来提升了陶粒的力学强度,在高温下烧结促进了陶粒中气孔的排出,使得烧结致密性得到提高;(2)本发明制备的耐磨表层填料是以异戊二烯为原料、引入刚性α-松油烯、复配以丙烯酸-2-乙基己酯,经催化加氢,消除聚合物中的不饱和双键,形成具有耐热、耐老化、耐磨的弹性物质,将其加入陶粒表面包覆接枝的活性物质中,充当填料,利用刚性单体填补了异戊二烯的耐磨性能,形成的胶体具备比较好的柔韧性,在高温下的压裂液中,注入时受到强大压力和摩擦力仍能保持较好的弹性,来保证内部包覆的陶粒不受损,减少陶粒的破碎率;(3)本发明利用硅烷偶联剂对陶粒表明上进行修饰,而与混合接枝物形成交联,使得交联得到的聚合物能固着在陶粒表面对陶粒进行保护,加入丙烯酰胺、丙烯酸、2-丙烯酰胺基-2-甲基丙磺酸等混合接枝物,利用其含有的磺酸基、羧基等亲水性基团进行吸水,吸水后由于毛细管力和分散作用,引起高分子链上的亲水性可电离基团的解离,使得分子链上带有大量的同种电荷,由于其静电斥力,网络扩张,随网络的扩张分子链间交联结构导致的弹性收缩力也在增加,限制了网络的无限膨胀,抵消了静电排斥,使得支撑剂在遇水后能进行较好的溶胀过程来提升了支撑裂缝的间距,提高了支撑效率。具体实施方式填料基料为:取异戊二烯按质量比10~20:3~9加入α-松油烯混合,即得。钯催化剂:钯含量0.48~0.52%、比表面积1000~1300m2/g、堆密度0.4~0.5g/ml。陶粒基材为:取铝矾土按质量比4~8:1~4加入紫砂土混合,即得。辅助烧结料为:按质量份数计,取10~15份硅灰石、3~8份锰矿粉、1~3份钾长石、1~4份白云石混合,即得。硅烷偶联剂:取乙烯基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷中任意一种或任意几种按任意质量比混合,即得。耐磨表层填料的制备方法为:(1)按质量份数计,取10~15份填料基料、7~10份丙烯酸-2-乙基己酯、1~4份十二烷基二苯醚二磺酸钠、70~90份去离子水,升温至50~70℃搅拌混合40~50min,得混合物,加入混合物质量5~9%的磷酸钾,搅拌混合20~30min,再加入混合物10~15%的氯化钾,于50~70℃搅拌混合50~90min,得混合物a,加入混合物a质量1~3%的过硫酸钾,通入氮气保护,升温至70~80℃搅拌混合3~5h,得搅拌混合物;(2)取搅拌混合物按质量比4~9:10~20加入质量分数为4%的氯化钙溶液,静置50~60min,取沉淀干燥,得干燥物,取干燥物按质量比1~4:80~90加入二甲苯,加入干燥物质量1~3%的钯催化剂,通入氢气,升温至110~120℃保温4~8h,得混合物b,取混合物b按质量比2~5:10~30加入无水乙醇,静置1~3h,取沉淀a干燥,混炼5~10min,于140~150℃、15mpa平板硫化3~5h,冷却至室温,即得耐磨表层填料。混合接枝物为:按质量份数计,取8~12份丙烯酰胺、6~9份丙烯酸、5~8份2-丙烯酰胺基-2-甲基丙磺酸、1~3份n,n-亚甲基丙烯酰胺混合,即得。引发添加剂为:取偶氮二异丁咪唑啉盐酸盐按质量比1~4:5~9加入亚硫酸氢钠混合,即得。一种陶粒支撑剂的制备方法,包括如下步骤:s1.取陶粒基材按质量比10~20:3~9加入辅助烧结料混合,球磨3~5min,粉碎过300目筛,收集过筛颗粒按质量比10~20:3~8加入去离子水混合,造粒,过30目筛,收集过筛颗粒a抛光20~30min,干燥,得干燥物,取干燥物于200~300℃保温2~4h,再以5℃/min升温速率升温至1450~1510℃保温1~3h,冷却至室温,得冷却物;s2.取冷却物经无水乙醇、丙酮洗涤干燥,得干燥物a,取硅烷偶联剂按质量比1~5:10~15加入石油醚,调节ph至3~4,得混合液,取干燥物a按质量比2~5:10~15加入混合液,静置18~24h,过滤,取滤渣真空干燥,得线.取混合接枝物按质量比5~10:3~7:30~40加入耐磨表层填料、真空干燥物,加入混合接枝物质量20~30%质量分数为10%的氢氧化钠溶液,通入氮气保护,再加入混合接枝物质量3~6%的过硫酸铵,于30~35℃搅拌混合20~30min,得基体物,取基体物按质量比90~100:1~4加入引发添加剂混合,于35~40℃保温3~6h,干燥,粉碎过25目筛,收集过筛颗粒,即得陶粒支撑剂。实施例1填料基料为:取异戊二烯按质量比10:3加入α-松油烯混合,即得。钯催化剂:钯含量0.48%、比表面积1000m2/g、堆密度0.4g/ml。陶粒基材为:取铝矾土按质量比4:1加入紫砂土混合,即得。辅助烧结料为:按质量份数计,取10份硅灰石、3份锰矿粉、1份钾长石、1份白云石混合,即得。硅烷偶联剂:取乙烯基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷中任意一种或任意几种按任意质量比混合,即得。耐磨表层填料的制备方法为:(1)按质量份数计,取10份填料基料、7份丙烯酸-2-乙基己酯、1份十二烷基二苯醚二磺酸钠、70份去离子水,升温至50℃搅拌混合40min,得混合物,加入混合物质量5%的磷酸钾,搅拌混合20min,再加入混合物10%的氯化钾,于50℃搅拌混合50min,得混合物a,加入混合物a质量1%的过硫酸钾,通入氮气保护,升温至70℃搅拌混合3h,得搅拌混合物;(2)取搅拌混合物按质量比4:10加入质量分数为4%的氯化钙溶液,静置50min,取沉淀干燥,得干燥物,取干燥物按质量比1:80加入二甲苯,加入干燥物质量1%的钯催化剂,通入氢气,升温至110℃保温4h,得混合物b,取混合物b按质量比2:10加入无水乙醇,静置1h,取沉淀a干燥,混炼5min,于140℃、15mpa平板硫化3h,冷却至室温,即得耐磨表层填料。混合接枝物为:按质量份数计,取8份丙烯酰胺、6份丙烯酸、5份2-丙烯酰胺基-2-甲基丙磺酸、1份n,n-亚甲基丙烯酰胺混合,即得。引发添加剂为:取偶氮二异丁咪唑啉盐酸盐按质量比1:5加入亚硫酸氢钠混合,即得。一种陶粒支撑剂的制备方法,包括如下步骤:s1.取陶粒基材按质量比10:3加入辅助烧结料混合,球磨3min,粉碎过300目筛,收集过筛颗粒按质量比10:3加入去离子水混合,造粒,过30目筛,收集过筛颗粒a抛光20min,干燥,得干燥物,取干燥物于200℃保温2h,再以5℃/min升温速率升温至1450℃保温1h,冷却至室温,得冷却物;s2.取冷却物经无水乙醇、丙酮洗涤干燥,得干燥物a,取硅烷偶联剂按质量比1:10加入石油醚,调节ph至3,得混合液,取干燥物a按质量比2:10加入混合液,静置18h,过滤,取滤渣真空干燥,得线.取混合接枝物按质量比5:3:30加入耐磨表层填料、真空干燥物,加入混合接枝物质量20%质量分数为10%的氢氧化钠溶液,通入氮气保护,再加入混合接枝物质量3%的过硫酸铵,于30℃搅拌混合20min,得基体物,取基体物按质量比90:1加入引发添加剂混合,于35℃保温3h,干燥,粉碎过25目筛,收集过筛颗粒,即得陶粒支撑剂。实施例2填料基料为:取异戊二烯按质量比15:6加入α-松油烯混合,即得。钯催化剂:钯含量0.50%、比表面积1150m2/g、堆密度0.45g/ml。陶粒基材为:取铝矾土按质量比6:3加入紫砂土混合,即得。辅助烧结料为:按质量份数计,取13份硅灰石、5份锰矿粉、2份钾长石、2份白云石混合,即得。硅烷偶联剂:取乙烯基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷中任意一种或任意几种按任意质量比混合,即得。耐磨表层填料的制备方法为:(1)按质量份数计,取12份填料基料、8份丙烯酸-2-乙基己酯、2份十二烷基二苯醚二磺酸钠、80份去离子水,升温至60℃搅拌混合45min,得混合物,加入混合物质量7%的磷酸钾,搅拌混合25min,再加入混合物13%的氯化钾,于60℃搅拌混合70min,得混合物a,加入混合物a质量2%的过硫酸钾,通入氮气保护,升温至75℃搅拌混合4h,得搅拌混合物;(2)取搅拌混合物按质量比6:15加入质量分数为4%的氯化钙溶液,静置55min,取沉淀干燥,得干燥物,取干燥物按质量比2:85加入二甲苯,加入干燥物质量2%的钯催化剂,通入氢气,升温至115℃保温6h,得混合物b,取混合物b按质量比3:20加入无水乙醇,静置2h,取沉淀a干燥,混炼7min,于145℃、15mpa平板硫化4h,冷却至室温,即得耐磨表层填料。混合接枝物为:按质量份数计,取10份丙烯酰胺、7份丙烯酸、6份2-丙烯酰胺基-2-甲基丙磺酸、2份n,n-亚甲基丙烯酰胺混合,即得。引发添加剂为:取偶氮二异丁咪唑啉盐酸盐按质量比3:7加入亚硫酸氢钠混合,即得。一种陶粒支撑剂的制备方法,包括如下步骤:s1.取陶粒基材按质量比15:6加入辅助烧结料混合,球磨4min,粉碎过300目筛,收集过筛颗粒按质量比15:5加入去离子水混合,造粒,过30目筛,收集过筛颗粒a抛光25min,干燥,得干燥物,取干燥物于250℃保温3h,再以5℃/min升温速率升温至1480℃保温2h,冷却至室温,得冷却物;s2.取冷却物经无水乙醇、丙酮洗涤干燥,得干燥物a,取硅烷偶联剂按质量比3:12加入石油醚,调节ph至3.5,得混合液,取干燥物a按质量比3:13加入混合液,静置21h,过滤,取滤渣真空干燥,得线.取混合接枝物按质量比7:5:35加入耐磨表层填料、真空干燥物,加入混合接枝物质量25%质量分数为10%的氢氧化钠溶液,通入氮气保护,再加入混合接枝物质量4%的过硫酸铵,于33℃搅拌混合25min,得基体物,取基体物按质量比95:3加入引发添加剂混合,于37℃保温5h,干燥,粉碎过25目筛,收集过筛颗粒,即得陶粒支撑剂。实施例3填料基料为:取异戊二烯按质量比20:9加入α-松油烯混合,即得。钯催化剂:钯含量0.52%、比表面积1300m2/g、堆密度0.5g/ml。陶粒基材为:取铝矾土按质量比8:4加入紫砂土混合,即得。辅助烧结料为:按质量份数计,取15份硅灰石、8份锰矿粉、3份钾长石、4份白云石混合,即得。硅烷偶联剂:取乙烯基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷中任意一种或任意几种按任意质量比混合,即得。耐磨表层填料的制备方法为:(1)按质量份数计,取15份填料基料、10份丙烯酸-2-乙基己酯、4份十二烷基二苯醚二磺酸钠、90份去离子水,升温至70℃搅拌混合50min,得混合物,加入混合物质量9%的磷酸钾,搅拌混合30min,再加入混合物15%的氯化钾,于70℃搅拌混合90min,得混合物a,加入混合物a质量3%的过硫酸钾,通入氮气保护,升温至80℃搅拌混合5h,得搅拌混合物;(2)取搅拌混合物按质量比9:20加入质量分数为4%的氯化钙溶液,静置60min,取沉淀干燥,得干燥物,取干燥物按质量比4:90加入二甲苯,加入干燥物质量3%的钯催化剂,通入氢气,升温至120℃保温8h,得混合物b,取混合物b按质量比5:30加入无水乙醇,静置3h,取沉淀a干燥,混炼10min,于150℃、15mpa平板硫化5h,冷却至室温,即得耐磨表层填料。混合接枝物为:按质量份数计,取12份丙烯酰胺、9份丙烯酸、8份2-丙烯酰胺基-2-甲基丙磺酸、3份n,n-亚甲基丙烯酰胺混合,即得。引发添加剂为:取偶氮二异丁咪唑啉盐酸盐按质量比4:9加入亚硫酸氢钠混合,即得。一种陶粒支撑剂的制备方法,包括如下步骤:s1.取陶粒基材按质量比20:9加入辅助烧结料混合,球磨5min,粉碎过300目筛,收集过筛颗粒按质量比20:8加入去离子水混合,造粒,过30目筛,收集过筛颗粒a抛光30min,干燥,得干燥物,取干燥物于300℃保温4h,再以5℃/min升温速率升温至1510℃保温3h,冷却至室温,得冷却物;s2.取冷却物经无水乙醇、丙酮洗涤干燥,得干燥物a,取硅烷偶联剂按质量比5:15加入石油醚,调节ph至4,得混合液,取干燥物a按质量比5:15加入混合液,静置24h,过滤,取滤渣真空干燥,得线.取混合接枝物按质量比10:7:40加入耐磨表层填料、真空干燥物,加入混合接枝物质量30%质量分数为10%的氢氧化钠溶液,通入氮气保护,再加入混合接枝物质量6%的过硫酸铵,于35℃搅拌混合30min,得基体物,取基体物按质量比100:4加入引发添加剂混合,于40℃保温6h,干燥,粉碎过25目筛,收集过筛颗粒,即得陶粒支撑剂。对比例1:与实施例1的制备方法基本相同,唯有不同的是缺少陶粒基材。对比例2:与实施例1的制备方法基本相同,唯有不同的是缺少辅助烧结料。对比例3:与实施例1的制备方法基本相同,唯有不同的是缺少耐磨表层填料。对比例4:与实施例1的制备方法基本相同,唯有不同的是缺少混合接枝物。对比例5:淮南市某公司生产的陶粒支撑剂。将实施例与对比例所得陶粒支撑剂按照sy/t5108-2014标准做测试,测试结果,如表1所示。表1:测试项目实施例1实施例2实施例3对比例1对比例2对比例3对比例4对比例5视密度(g/cm3)1.071.131.111.151.251.211.191.79抗压强度(mpa)89.385.487.680.378.575.171.241渗透率/18h(μm2·cm)102.595.398.189.684.379.38133.152mpa破碎率(%)6.937.216.957.327.387.337.299.7综上所述,本发明的陶粒支撑剂具有较高的强度及较多的空隙的特点,大幅度的提升了其导流能力,破碎率低支撑效果强,值得大力推广。以上所述仅为本发明的较佳方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围以内。当前第1页12
如您需求助技术专家,请点此查看客服电线.探索新型氧化还原酶结构-功能关系,电催化反应机制 2.酶电催化导向的酶分子改造 3.纳米材料、生物功能多肽对酶-电极体系的影响4. 生物电化学传感和生物电合成体系的设计与应用。
1.高分子材料的共混与复合 2.涉及材料功能化及结构与性能的研究; 高分子热稳定剂的研发
1. 晶面可控氧化铝、碳基载体及催化剂等高性能、新结构催化材料研究 2. 乙烯环氧化催化剂的研究与开发 3. 低碳不饱和烯烃的选择性氧化催化剂及工业技术开发
1. 加氢精制 2. 选择加氢 3. 加氢脱氧 4. 介孔及介微孔分子筛合成及催化应用